lu.se

FYSIK I LUND

Portal för Fysiska institutionen, Institutionen för astronomi och teoretisk fysik samt Medicinsk strålningsfysik

Denna sida på svenska This page in English

Supremacy of the quantum many-body Szilard engine with attractive bosons

2018-01-17

Ett samarbete mellan forskare vid Matematisk fysik och Fasta tillståndets fysik (samt internationella kollegor) har lett till en artikel som just blivit accepterad för publikation i Physical Review Letters. Forskningen finansieras av ett KAW-projekt (coord. H. LInke) och VR.

Artikel är "Supremacy of the quantum many-body Szilard engine with attractive bosons", av Jakob Bengtsson, Mikael Nilsson Tengstrand, Andreas Wacker, Peter Samuelsson, Masahito Ueda, Heiner Linke och Stephanie M. Reimann, accepterad för publikation i Physical Review Letters.

Kort, populär beskrivning:

Boosted information-work conversion with attractive bosons The Szilard engine has been a paradigm in thermodynamics for more than 80 years because of the way it illustrates and interrelates fundamental aspects of work, heat and information. However, so far it has been a mystery if - and how - interactions in a many-body quantum system influence the operation of this heat engine. In our Letter, we show that in fact, such interactions - which are next to unavoidable in an experimental realization of the engine - significantly alter the information-to-work output. Specifically, we show that the work output of a Szilard engine containing a quantum gas of attractive bosons is superior to that generated by an engine containing non-interacting particles and that this supremacy increases significantly with particle number. We also show that the work output reaches a maximum at a finite temperature, which is surprising given the quantum nature of this effect. Our work demonstrates an intricate interplay between quantum mechanics, thermodynamics and information theory and sheds light on a hitherto unexplored fundamental question that is relevant for a wide range of many-body quantum systems where interactions are important.