Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Cord Arnold

Koordinator för Mötesplats Rydbergseminarier

Default user image.

Attosecond timing of electron emission from a molecular shape resonance

Författare

  • S. Nandi
  • E. Plésiat
  • S. Zhong
  • A. Palacios
  • D. Busto
  • M. Isinger
  • L. Neoričić
  • C. L. Arnold
  • R. J. Squibb
  • R. Feifel
  • P. Decleva
  • A. L'Huillier
  • F. Martín
  • M. Gisselbrecht

Summary, in English

Shape resonances in physics and chemistry arise from the spatial confinement of a particle by a potential barrier. In molecular photoionization, these barriers prevent the electron from escaping instantaneously, so that nuclei may move and modify the potential, thereby affecting the ionization process. By using an attosecond two-color interferometric approach in combination with high spectral resolution, we have captured the changes induced by the nuclear motion on the centrifugal barrier that sustains the well-known shape resonance in valence-ionized N2. We show that despite the nuclear motion altering the bond length by only 2%, which leads to tiny changes in the potential barrier, the corresponding change in the ionization time can be as large as 200 attoseconds. This result poses limits to the concept of instantaneous electronic transitions in molecules, which is at the basis of the Franck-Condon principle of molecular spectroscopy.

Avdelning/ar

  • Atomfysik
  • NanoLund: Centre for Nanoscience
  • Synkrotronljusfysik

Publiceringsår

2020

Språk

Engelska

Sidor

7762-7762

Publikation/Tidskrift/Serie

Science Advances

Volym

6

Issue

31

Dokumenttyp

Artikel i tidskrift

Förlag

American Association for the Advancement of Science (AAAS)

Ämne

  • Atom and Molecular Physics and Optics

Status

Published

Projekt

  • Attosecond chronoscopy of electron wave-packets probing entanglement and time-ordering of quantum processes

ISBN/ISSN/Övrigt

  • ISSN: 2375-2548