The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Cord Arnold

Coordinator of Rydberg seminars

Default user image.

Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry

Author

  • Miguel Miranda
  • Marija Kotur
  • Piotr Rudawski
  • Chen Guo
  • Anne Harth
  • Anne L'Huillier
  • Cord Arnold

Summary, in English

We present a method for characterizing ultrashort laser pulses in space and time, based on spatially resolved Fourier transform spectrometry. An unknown pulse is interfered with a delayed, spatially uniform reference on a CCD camera. The reference pulse is created by spatially filtering a portion of the unknown pulse. By scanning the delay between the two pulses, an interferogram is obtained at each pixel, allowing us to determine the spatially resolved phase difference between the unknown pulse and the reference pulse. High-resolution spatiotemporal characterization of an ultrashort pulse is demonstrated, and the sensitivity of the method to spatiotemporal coupling is shown for the case of a pulse with pulse front tilt. (C) 2014 Optical Society of America

Department/s

  • Atomic Physics

Publishing year

2014

Language

English

Pages

5142-5145

Publication/Series

Optics Letters

Volume

39

Issue

17

Document type

Journal article

Publisher

Optical Society of America

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0146-9592