Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Cord Arnold

Koordinator för Mötesplats Rydbergseminarier

Default user image.

Spectral phase measurement of a Fano resonance using tunable attosecond pulses.

Författare

  • Marija Kotur
  • Diego Guenot
  • Á Jiménez-Galán
  • David Kroon
  • Esben Witting Larsen
  • Maite Louisy
  • Samuel Bengtsson
  • Miguel Miranda
  • Johan Mauritsson
  • Cord Arnold
  • Sophie Canton
  • Mathieu Gisselbrecht
  • T Carette
  • J M Dahlström
  • E Lindroth
  • A Maquet
  • L Argenti
  • F Martín
  • Anne L'Huillier

Summary, in English

Electron dynamics induced by resonant absorption of light is of fundamental importance in nature and has been the subject of countless studies in many scientific areas. Above the ionization threshold of atomic or molecular systems, the presence of discrete states leads to autoionization, which is an interference between two quantum paths: direct ionization and excitation of the discrete state coupled to the continuum. Traditionally studied with synchrotron radiation, the probability for autoionization exhibits a universal Fano intensity profile as a function of excitation energy. However, without additional phase information, the full temporal dynamics cannot be recovered. Here we use tunable attosecond pulses combined with weak infrared radiation in an interferometric setup to measure not only the intensity but also the phase variation of the photoionization amplitude across an autoionization resonance in argon. The phase variation can be used as a fingerprint of the interactions between the discrete state and the ionization continua, indicating a new route towards monitoring electron correlations in time.

Avdelning/ar

  • Atomfysik
  • MAX IV-laboratoriet
  • Synkrotronljusfysik

Publiceringsår

2016

Språk

Engelska

Publikation/Tidskrift/Serie

Nature Communications

Volym

7

Dokumenttyp

Artikel i tidskrift

Förlag

Nature Publishing Group

Ämne

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 2041-1723