Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Martin Magnusson

Ställföreträdande prefekt & studierektor för grundutbildning

Default user image.

Nanowires With Promise for Photovoltaics

Författare

  • Magnus Borgström
  • Jesper Wallentin
  • Magnus Heurlin
  • Stefan Falt
  • Peter Wickert
  • Jack Leene
  • Martin Magnusson
  • Knut Deppert
  • Lars Samuelson

Summary, in English

Solar energy harvesting for electricity production is regarded as a fully credible future energy source: plentiful and without serious environmental concerns. The breakthrough for solar energy technology implementation has, however, been hampered by two issues: the conversion efficiency of light into electricity and the solar panel production cost. The use of III-V nanowires (NWs) in photovoltaics allows to respond to both these demands. They offer efficient light absorption and significant cost reduction. These low-dimensional structures can be grown epitaxially in dense NW arrays directly on silicon wafers, which are abundant and cheaper than the germanium substrates used for triple-junction solar cells today. For planar structures, lattice matching poses a strong restriction on growth. III-V NWs offer to create highly efficient multijunction devices, since multiple materials can be combined to match the solar spectrum without the need of tightly controlled lattice matching. At the same time, less material is required for NW-based solar cells than for planar-based architecture. This approach has potential to reach more than 50% in efficiency. Here, we describe our work on NW tandem solar cells, aiming toward two junctions absorbing different parts of the solar spectrum, connected in series via a tunnel diode.

Avdelning/ar

  • Fasta tillståndets fysik
  • NanoLund: Centre for Nanoscience

Publiceringsår

2011

Språk

Engelska

Sidor

1050-1061

Publikation/Tidskrift/Serie

IEEE Journal of Selected Topics in Quantum Electronics

Volym

17

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

IEEE - Institute of Electrical and Electronics Engineers Inc.

Ämne

  • Condensed Matter Physics
  • Nano Technology

Nyckelord

  • Doping
  • nanowires (NWs)
  • photovoltaics (PV)

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1077-260X