Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Martin Magnusson

Ställföreträdande prefekt & studierektor för grundutbildning

Default user image.

Predicting the deposition spot radius and the nanoparticle concentration distribution in an electrostatic precipitator

Författare

  • Calle Preger
  • Niels C. Overgaard
  • Maria E. Messing
  • Martin H. Magnusson

Summary, in English

Deposition of aerosol nanoparticles using an electrostatic precipitator is widely used in the aerosol community. Despite this, basic knowledge regarding what governs the deposition has been missing. This concerns the prediction of the size of the particle collection zone, but also, perhaps more importantly, prediction of the nanoparticle concentration distribution on the substrate, both of which are necessary to achieve faster and more precise deposition. In this article, we have used COMSOL Multiphysics simulations, experimental depositions, and two analytical models to describe the deposition. Based on that, we propose a simple equation that can be used to predict the size of the deposition spot as well as the particle concentration on the substrate. The equation we derive concludes that the size of the deposition spot only depends on the gas flow rate into the precipitator, and on the constant drift velocity of a particle in an electric field. The equation also displays that the deposited particle concentration is independent of the gas flow rate. Our general mathematical analysis has great applicability, as it can be used to model different geometries and different types of deposition methods than the one described in this article. We can therefore also propose that the drift velocity in this model easily could be replaced by another velocity acting on the particles at other deposition conditions, for instance, the thermophoretic velocity during thermophoretic deposition. This would result in the same dependence as presented in this article. Finally, we demonstrate analytically and through experiment that the particle distribution inside the spot will be homogenous and follows a top hat profile.

Avdelning/ar

  • Fasta tillståndets fysik
  • NanoLund: Centre for Nanoscience
  • Matematik LTH
  • ELLIIT: the Linköping-Lund initiative on IT and mobile communication
  • eSSENCE: The e-Science Collaboration

Publiceringsår

2020-01-28

Språk

Engelska

Sidor

718-728

Publikation/Tidskrift/Serie

Aerosol Science and Technology

Volym

54

Issue

6

Dokumenttyp

Artikel i tidskrift

Förlag

Taylor & Francis

Ämne

  • Fusion, Plasma and Space Physics
  • Nano Technology
  • Condensed Matter Physics

Nyckelord

  • Mark Swihart

Status

Published

Projekt

  • Framställning av mer kosteffektiva material för katalysatorer

ISBN/ISSN/Övrigt

  • ISSN: 0278-6826